Potentials generated by $\operatorname{SU}(1,1)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 192229
(http://iopscience.iop.org/0305-4470/19/11/030)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 18:27

Please note that terms and conditions apply.

COMMENT

Potentials generated by $\mathbf{S U}(1,1)$

C V Sukumar
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

Received 1 November 1985

Abstract

A systematic procedure for deriving a class of potentials with the underlying symmetry group $S U(1,1)$, starting from the commutation relations for the generators of $\operatorname{SU}(1,1)$, is presented.

Ginnochio (1984) has constructed a class of exactly solvable potentials whose spectral properties are closely related to those of the $\operatorname{sech}^{2} x$ potential. Alhassid et al (1985) have shown that this class of potentials belongs to the group $\mathrm{SU}(1,1)$. In this comment the constructive procedure of Alhassid et al is systematically developed to find potentials with the underlying symmetry group $\operatorname{SU}(1,1)$. It is shown that this approach leads to a larger class of potentials than that discussed by Ginnochio (1984) and Alhassid et al (1985).

The $\mathrm{SU}(1,1)$ algebra with the generators $J_{ \pm}$and J_{z} is governed by the commutation relations

$$
\begin{equation*}
\left[J_{z}, J_{ \pm}\right]= \pm J_{ \pm} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[J_{+}, J_{-}\right]=-2 J_{z} . \tag{2}
\end{equation*}
$$

The Casimir operator is

$$
\begin{equation*}
C=J_{z}^{2}-\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right) . \tag{3}
\end{equation*}
$$

Simultaneous eigenstates of the operators C and J_{z} denoted by $|j m\rangle$ with the eigenvalues $j(j+1)$ and m, respectively, may then be constructed. For discrete representations of $\mathrm{SU}(1,1), m$ can take values $-j+n$ where n is a positive integer. The Hamiltonian H may be taken to be a linear function of the Casimir invariant:

$$
\begin{equation*}
H=-\frac{1}{4}-C . \tag{4}
\end{equation*}
$$

Then $|j m\rangle$ is also an eigenstate of H with the eigenvalue $-\left(j+\frac{1}{2}\right)^{2}$.
To find potentials whose underlying dynamical group is $\operatorname{SU}(1,1)$ one may extend the procedure of Alhassid et al (1984) and attempt a representation of the generators of the form

$$
\begin{align*}
& J_{z}=-\mathrm{i} \partial / \partial \varphi \tag{5}\\
& J_{ \pm}=\exp (\pm \mathrm{i} \varphi)\left(\pm h(x) \mathrm{d} / \mathrm{d} x \pm g(x)+f(x) J_{z}+c(x)\right) \tag{6}
\end{align*}
$$

This representation ensures that (1) is satisfied for any choice of the functions c, f, g and h while (2) is satisfied only if

$$
\begin{equation*}
f^{2}-h \mathrm{~d} f / \mathrm{d} x=1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
h \mathrm{~d} c / \mathrm{d} x-c f=0 \tag{8}
\end{equation*}
$$

Explicit solutions of (7) and (8) may be given:

$$
\begin{align*}
& f(x)=-\tanh \int_{x_{0}}^{x} \mathrm{~d} y / h(y) \tag{9}\\
& c(x)=A \operatorname{sech} \int_{x_{0}}^{x} \mathrm{~d} y / h(y) \tag{10}
\end{align*}
$$

in which A and x_{0} are arbitrary constants. The Hamiltonian is then given by

$$
\begin{gather*}
H=-\frac{1}{4}+\left(f^{2}-1\right) J_{z}^{2}-h^{2} \mathrm{~d}^{2} / \mathrm{d} x^{2}-(h \mathrm{~d} h / \mathrm{d} x+2 g h-f h) \mathrm{d} / \mathrm{d} x \\
+\left(f g-g^{2}-h \mathrm{~d} g / \mathrm{d} x\right)+\left(2 c f J_{z}+c^{2}\right) . \tag{11}
\end{gather*}
$$

The requirement that the Hamiltonian be free of terms linear in the momentum operator can be met if

$$
\begin{equation*}
g(x)=\frac{1}{2}(f-\mathrm{d} h / \mathrm{d} x) \tag{12}
\end{equation*}
$$

It is now clear that a given choice of $h(x)$ leads to a unique determination of $f(x)$, $g(x)$ and $c(x)$ apart from the arbitrary constant A. The eigenvalue equation for H leads to the differential equation

$$
\begin{gather*}
{\left[\frac{-\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\frac{1}{h^{2}(x)}\left(\left(m^{2}-\frac{1}{4}-A^{2}\right) \operatorname{sech}^{2} \int^{x} \mathrm{~d} y / h(y)+2 A m \operatorname{sech} \int^{x} \frac{\mathrm{~d} y}{h(y)} \tanh \int^{x} \frac{\mathrm{~d} y}{h(y)}\right)\right.} \\
\left.+\frac{1}{2}\left(h^{-1 / 2} \frac{\mathrm{~d}}{\mathrm{~d} x} h^{-1 / 2} \frac{\mathrm{~d} h}{\mathrm{~d} x}\right)+\left(j+\frac{1}{2}\right)^{2} / h^{2}(x)\right] \Psi=0 . \tag{13}
\end{gather*}
$$

The next step is to choose $h(x)$ such that (13) reduces to a Schrödinger equation with kinetic and potential terms.
(i) First consider the choice $h(x)= \pm 1, x_{0}=0$ which leads to the solutions

$$
\begin{equation*}
f=\mp \tanh x \quad g=\mp \frac{1}{2} \tanh x \quad \text { and } \quad c=A \operatorname{sech} x . \tag{14}
\end{equation*}
$$

Equation (13) then becomes the Schrödinger equation for the potential

$$
\begin{equation*}
V_{m}(x, A)=-\left(m^{2}-\frac{1}{4}-A^{2}\right) \operatorname{sech}^{2} x-2 A m \operatorname{sech} x \tanh x \tag{15}
\end{equation*}
$$

with the eigenvalues

$$
\begin{equation*}
E_{n}=-\left(n+\frac{1}{2}-m\right)^{2} \quad n=0,1, \ldots N \leqslant m-\frac{1}{2} . \tag{16}
\end{equation*}
$$

For a fixed value of m and varying values of A the family of potentials defined by (15) have identical spectra given by (16). For $A=0$ (Alhassid et al 1984a) $V(x)$ is a $\operatorname{sech}^{2} x$ potential. For $A \neq 0$ the potential is no longer a symmetric function of x. For non-zero A the potential is attractive in some region of space $|x| \leqslant \infty$ but is repulsive in some other region of space. (15) also shows that

$$
\begin{equation*}
V_{\nu \mu}(x)=-\nu(\nu+1) \operatorname{sech}^{2} x+\mu \operatorname{sech} x \tanh x \tag{17}
\end{equation*}
$$

for fixed values of ν and μ corresponds to

$$
\begin{equation*}
m^{2}=\frac{1}{2}\left\{\left(\nu+\frac{1}{2}\right)^{2}+\left[\left(\nu+\frac{1}{2}\right)^{4}+\mu^{2}\right]^{1 / 2}\right\} . \tag{18}
\end{equation*}
$$

The spectrum of (17) is then given by (16) with m determined by (18).
(ii) Next consider the choice $h(x)=1, x_{0}=-\infty$ with the corresponding solutions

$$
\begin{equation*}
f(x)=-1 \quad g(x)=-\frac{1}{2} \quad c(x)=\tilde{A} \mathrm{e}^{-x} . \tag{19}
\end{equation*}
$$

Equation (13) then shows that the Morse potential (Alhassid and Wu 1984) defined by

$$
\begin{equation*}
\tilde{V}_{m}(x)=m^{2}\{\exp [-2(x-d)]-2 \exp [-(x-d)]\} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\ln (\tilde{A} / m) \tag{21}
\end{equation*}
$$

has the same spectrum (16) as the family of potentials $V_{m}(x, A)$ (15) for the same value of m and any value of A.
(iii) A more general solution can be found by noting that if $h(x)$ satisfies the non-linear equation
$\frac{1}{h^{2}(x)}=\alpha^{2}-\frac{1}{h^{2}(x)}\left(\beta^{2} \operatorname{sech}^{2} \int^{x} \frac{\mathrm{~d} y}{h(y)}+\gamma \operatorname{sech} \int^{x} \frac{\mathrm{~d} y}{h(y)} \tanh \int^{x} \frac{\mathrm{~d} y}{h(y)}\right)$
then (13) becomes the eigenvalue equation of the standard form with kinetic and potential terms. When $\gamma=0$ the explicit solution of (22) is given by

$$
\begin{equation*}
\left.\alpha x=\beta z+\tanh ^{-1}[(\tan z) / \beta)\right] \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.z=\cos ^{-1}\left(h / h_{0}\right) \quad \text { and } \quad h_{0}=\left[\left(\beta^{2}+1\right) / \alpha^{2}\right)\right]^{1 / 2} \tag{23a}
\end{equation*}
$$

In terms of a new variable y defined by

$$
\begin{equation*}
\alpha x / \beta=\tan ^{-1} \beta y+\beta^{-1} \tanh ^{-1} y \tag{24}
\end{equation*}
$$

it is easy to show that

$$
\begin{gather*}
h=\frac{h_{0}}{\left(1+\beta^{2} y^{2}\right)^{1 / 2}} \quad f=\frac{-y\left(1+\beta^{2}\right)^{1 / 2}}{\left(1+\beta^{2} y^{2}\right)} \\
g=-\frac{1}{2 \alpha}\left(\frac{1+\beta^{2}}{1+\beta^{2} y^{2}}\right)^{1 / 2}\left(\alpha y-\alpha \beta^{2} y \frac{\left(1-y^{2}\right)}{\left(1+\beta^{2}\right)}\right) \quad \text { and } \quad c=A\left(\frac{1-y^{2}}{1+\beta^{2} y^{2}}\right)^{1 / 2} . \tag{25}
\end{gather*}
$$

Correspondence with Alhassid et al (1985) may be established by letting

$$
\begin{equation*}
\beta^{2}=\lambda^{2}-1 \quad \text { and } \quad \alpha=\lambda^{2} \tag{26}
\end{equation*}
$$

Equation (13) then leads to the Schrödinger equation

$$
\begin{align*}
&\left\{-\mathrm{d}^{2} / \mathrm{d} x^{2}-[\right.\left.\left(m^{2}-\frac{1}{4}-A^{2}\right)+\left(\lambda^{2}-1\right)\left(j+\frac{1}{2}\right)^{2}\right] \lambda^{2}\left(1-y^{2}\right)+2 A m \lambda^{3} y\left(1-y^{2}\right)^{1 / 2} \\
&\left.-\frac{1}{4}\left(\lambda^{2}-1\right)\left[5\left(1-\lambda^{2}\right) y^{4}+\left(7-\lambda^{2}\right) y^{2}+2\right]\right\} \psi=-\lambda^{4}\left(j+\frac{1}{2}\right)^{2} \psi . \tag{27}
\end{align*}
$$

The symmetric potentials discussed by Alhassid et al (1985) correspond to the choice $A=0$. For this choice of A let

$$
\begin{equation*}
\nu(\nu+1)=\left(m^{2}-\frac{1}{4}\right)+\left(\lambda^{2}-1\right)\left(j+\frac{1}{2}\right)^{2} . \tag{28}
\end{equation*}
$$

Since $j(n)=n-m$, fixed values of ν and λ correspond to

$$
\begin{equation*}
j(n)+\frac{1}{2}=\lambda^{-2}\left\{\left(n+\frac{1}{2}\right)-\left[\lambda^{2}\left(\nu+\frac{1}{2}\right)^{2}+\left(1-\lambda^{2}\right)\left(n+\frac{1}{2}\right)^{2}\right]^{1 / 2}\right\} . \tag{29}
\end{equation*}
$$

The spectrum of

$$
\begin{equation*}
V=-\nu(\nu+1) \lambda^{2}\left(1-y^{2}\right)-\frac{1}{4}\left(\lambda^{2}-1\right)\left[5\left(1-\lambda^{2}\right) y^{4}+\left(7-\lambda^{2}\right) y^{2}+2\right] \tag{30}
\end{equation*}
$$

is therefore given by

$$
\begin{equation*}
E_{n}=-\left(j(n)+\frac{1}{2}\right)^{2} \tag{31}
\end{equation*}
$$

with $j(n)$ determined by (29).
For $A \neq 0$ the potential in (27) is no longer a symmetric function of x. Let

$$
\begin{equation*}
\left(\delta+\frac{1}{2}\right)^{2}=m^{2}-A^{2}+\left(\lambda^{2}-1\right)\left(j+\frac{1}{2}\right)^{2} \quad \text { and } \quad 2 A m=\mu . \tag{32}
\end{equation*}
$$

For fixed values of λ, μ and $\delta, j(n)$ is then determined by the quartic equation

$$
\begin{align*}
& \lambda^{2}(j-n)^{4}+2(j-n)^{3}\left(\lambda^{2}-1\right)\left(n+\frac{1}{2}\right) \\
&+(j-n)^{2}\left[\left(\lambda^{2}-1\right)\left(n+\frac{1}{2}\right)^{2}-\left(\delta+\frac{1}{2}\right)^{2}\right]-\frac{1}{4} \mu^{2}=0 . \tag{33}
\end{align*}
$$

The eigenvalues of the potential

$$
\begin{align*}
& V(x)=-\delta(\delta+1) \lambda^{2}\left(1-y^{2}\right)+\mu \lambda^{3} y\left(1-y^{2}\right)^{1 / 2} \\
& \quad-\frac{1}{4}\left(\lambda^{2}-1\right)\left[5\left(1-\lambda^{2}\right) y^{4}+\left(7-\lambda^{2}\right) y^{2}+2\right] \tag{34}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda^{2} x=\tanh ^{-1} y+\left(\lambda^{2}-1\right)^{1 / 2} \tanh ^{-1}\left[y\left(1-\lambda^{2}\right)^{1 / 2}\right] \tag{35}
\end{equation*}
$$

are therefore given by (31) with $j(n)$ determined by (33).
Solutions of (22) for $\gamma \neq 0$ will enable the generation of an even larger class of potentials than that discussed above. However we have not been able to solve (22) for non-zero values of γ in closed analytic form.

In this comment it has been shown that a coordinate space realisation of the generators of $\operatorname{SU}(1,1)$ may be used to construct a class of potentials whose spectra are determined by simple algebraic equations. The class of potentials discussed by Ginnochio (1984) and Alhassid et al (1985) is a subset of the more general class of potentials discussed in this comment. A similar analysis may be carried out for the group $\mathrm{SU}(2)$.

I thank Drs D Brink, B Buck and R Baldock for useful discussions. I also thank a referee for his useful suggestions.

References

