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COMMENT 

Potentials generated by SU(1,l) 

C V Sukumar 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, U K  

Received 1 November 1985 

Abstract. A systematic procedure for deriving a class of potentials with the underlying 
symmetry group SU(1, l ) ,  starting from the commutation relations for the generators of 
SU(1, l),  is presented. 

Ginnochio ( 1984) has constructed a class of exactly solvable potentials whose spectral 
properties are closely related to those of the sech’ x potential. Alhassid et a1 (1985) 
have shown that this class of potentials belongs to the group SU( 1 , l ) .  In this comment 
the constructive procedure of Alhassid et a1 is systematically developed to find poten- 
tials with the underlying symmetry group SU(1, 1). It is shown that this approach 
leads to a larger class of potentials than that discussed by Ginnochio (1984) and 
Alhassid et a1 (1985). 

The SU( 1 , l )  algebra with the generators J ,  and J, is governed by the commutation 
relations 

[ J , ,  J*I = *J* (1) 

and 

[ J + ,  J - ]  = -25,. 

c = J : - ; ( J + J - + J - J + ) .  

The Casimir operator is 

Simultaneous eigenstates of the operators C and J,  denoted by I j m )  with the eigenvalues 
j (  j + 1) and m, respectively, may then be constructed. For discrete representations of 
SU(1, l),  m can take values - j+n  where n is a positive integer. The Hamiltonian H 
may be taken to be a linear function of the Casimir invariant: 

(4) H = -1- C 
4 .  

Then Ijm) is also an eigenstate of H with the eigenvalue - ( j + i ) 2 .  
To find potentials whose underlying dynamical group is SU(1 , l )  one may extend 

the procedure of Alhassid et a1 (1984) and attempt a representation of the generators 
of the form 

J,  = -ia/acp ( 5 )  

J ,  = exp(*icp)(*h(x) d/dx*g(x)+f(x)J ,+ 4 x 1 ) .  (6) 
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This representation ensures that (1) is satisfied for any choice of the functions c, f, g 
and h while (2) is satisfied only if 

f 2 - h d f / d x = 1  (7) 

h dc/dx - cf = 0. (8) 

and 

Explicit solutions of (7) and (8) may be given: 

c(x) = A sech Ix:dy/h(y) 

in which A and xo are arbitrary constants. The Hamiltonian is then given by 

H = - ~ + ( f ’ - l ) J ~ - h ’ d ’ / d ~ ~ - ( h  dh/dx+2gh-Jh) d/dx 

+ (fg - g2 - h dg/dx) + (2cfJZ + c’). (11) 

The requirement that the Hamiltonian be free of terms linear in the momentum operator 
can be met if 

g (x )=+( f -dh ldx) .  (12) 
It is now clear that a given choice of h(x) leads to a unique determination of f (x) ,  
g(x)  and c(x) apart from the arbitrary constant A. The eigenvalue equation for H 
leads to the differential equation 

[s-m( -d2 1 dy/h(y)+2Am sech 

+ (j+i)’/h2(x) v’= 0. 
dx 3 

The next step is to choose h(x) such that (13) reduces to a Schrodinger equation 

(i) First consider the choice h(x) = *l,  x,,= 0 which leads to the solutions 
with kinetic and potential terms. 

f = r tanh x g = *$ tanh x and c = A sech x. (14) 

V , , , ( x , A ) = - ( m Z - ~ - A 2 ) s e c h Z x - 2 A m s e c h x  tanhx (15) 

E,, = -( n +$- m)’ n = o , ~ , .  . . N s m -+. 

Equation (13) then becomes the Schrodinger equation for the potential 

with the eigenvalues 

(16) 
For a fixed value of m and varying values of A the family of potentials defined by 
(15) have identical spectra given by (16). For A = O  (Alhassid er a1 1984a) V(x) is a 
sech’ x potential. For A # 0 the potential is no longer a symmetric function of x. For 
non-zero A the potential is attractive in some region of space 1x1 c CD but is repulsive 
in some other region of space. (1 5 )  also shows that 

V,,(x) = -v( v +  1) sech2 x + p  sech x tanh x (17) 
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for fixed values of v and p corresponds to 

m’ = +{( v ++I2+[(  v + + l 4 +  p2]1/2}. (18) 

The spectrum of (17) is then given by (16) with m determined by (18). 
(ii) Next consider the choice h(x) = 1, x, = --CO with the corresponding solutions 

f (x )  = -1 g(x) = -4 c(x) = ,i e,-x. (19) 

?,,,(x) = m’{exp[ -2(x - d ) ]  - 2 exp[ -(x - d)]} 

d = ln(A/m) (21) 

Equation (13) then shows that the Morse potential (Alhassid and Wu 1984) defined by 

(20) 

where 

has the same spectrum (16) as the family of potentials Vm(x, A) (15) for the same 
value of m and any value of A. 

(iii) A more general solution can be found by noting that if h(x)  satisfies the 
non-linear equation 

then (13) becomes the eigenvalue equation of the standard form with kinetic and 
potential terms. When y=O the explicit solution of (22) is given by 

a x  = p z  + tanh-’[(tan z ) / p ) ]  

z = cos-’( h /  h,) and h ,= [ (p2+ l ) l f f  )I . 

a x / P  = tan-’ py + p-’ tanh-‘ y 

(23) 

where 

(23a) 

(24) 

2 1/2 

In terms of a new variable y defined by 

it is easy to show that 

(25) 

(26) 

Correspondence with Alhassid et a1 (1985) may be established by letting 
2 p 2 =  A 2 -  1 and a = A .  

Equation (13) then leads to the Schrodinger equation 

{-dZ/dx2 - [( “-a-  A’) + ( A 2  - l)(j+f)’]A2( 1 -y2) +2AmA3y( 1 -y’)’/’ 

-a( A ’ - 1)[5( 1 - A 2)y4+ (7 - A 2)y2 + 2]}+ = - A 4 ( j  ++)’I,!/. (27) 
The symmetric potentials discussed by Alhassid et a1 (1985) correspond to the choice 
A = 0. For this choice of A let 

v( v + 1) = ( m2 -a) + (A’ - 1 ) ( j  + ;)2. (28) 
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Since j(n) = n - m, fixed values of v and A correspond to 

j(n) +f= A-2{(n +f) - [ A 2 (  v + + ) ~ +  ( 1  - A2)(n ++)2]1/2}.  

V =  -U( U +  1 ) A 2 ( 1  -y’)-a(A‘- 1)[5(1 -A2)y4+(7-A2)y2+2] (30) 

E ,  = - ( j ( n ) + $ ) *  (31 )  

(29) 

The spectrum of 

is therefore given by 

with j (  n )  determined by (29). 
For A # 0 the potential in (27) is no longer a symmetric function of x. Let 

(a++)’= m2-A2+(A2-  l ) ( j + $ ) 2  and 2Am = p. (32) 
For fixed values of A, I.L and 8, j(n) is then determined by the quartic equation 

A’C~ - n ) 4 +  2 ( j  - n l 3 ( h 2  - l ) ( n  ++I 
+ ( j  - n)’[(A’- I ) (  n +$)’ - ( 8  ++)’I - i p 2  = 0. (33) 

The eigenvalues of the potential 

where 

A’x=tanh-’ y + ( h 2 -  1)1’2 tanh-’[y(l - A 2 ) ” * ]  ( 35 )  

are therefore given by (31 )  with j ( n )  determined by (33) .  
Solutions of (22) for y # O  will enable the generation of an even larger class of 

potentials than that discussed above. However we have not been able to solve (22) 
for non-zero values of y in closed analytic form. 

In this comment it has been shown that a coordinate space realisation of the 
generators of SU(1, 1 )  may be used to construct a class of potentials whose spectra 
are determined by simple algebraic equations. The class of potentials discussed by 
Ginnochio (1984) and Alhassid et al (1985) is a subset of the more general class of 
potentials discussed in this comment. A similar analysis may be carried out for the 
group SU(2). 

I thank Drs D Brink, B Buck and R Baldock for useful discussions. I also thank a 
referee for his useful suggestions. 
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